Binary trees with factors¶
Time: O(N^2); Space: O(N); medium
Given an array of unique integers, each integer is strictly greater than 1.
We make a binary tree using these integers and each number may be used for any number of times.
Each non-leaf node’s value should be equal to the product of the values of it’s children.
How many binary trees can we make? Return the answer modulo 10 ** 9 + 7.
Example 1:
Input: A = [2, 4]
Output: 3
Explanation:
We can make these trees:
[2], [4], [4, 2, 2]
Example 2:
Input: A = [2, 4, 5, 10]
Output: 7
Explanation:
We can make these trees:
[2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].
Constraints:
1 <= len(A) <= 1000
2 <= A[i] <= 10 ^ 9
1. Dynamic Programming [O(N^2), O(N)]¶
[1]:
class Solution1(object):
"""
Time: O(N^2)
Space: O(N)
"""
def numFactoredBinaryTrees(self, A):
"""
:type A: List[int]
:rtype: int
"""
MOD = 10**9 + 7
A.sort()
dp = {}
for i in range(len(A)):
dp[A[i]] = 1
for j in range(i):
if A[i] % A[j] == 0 and A[i] // A[j] in dp:
dp[A[i]] += dp[A[j]] * dp[A[i] // A[j]]
dp[A[i]] %= MOD
return sum(dp.values()) % MOD
[2]:
s = Solution1()
A = [2, 4]
assert s.numFactoredBinaryTrees(A) == 3
A = [2, 4, 5, 10]
assert s.numFactoredBinaryTrees(A) == 7